Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Carbohydrate Polymer Technologies and Applications ; 5:100320, 2023.
Article in English | ScienceDirect | ID: covidwho-2325044

ABSTRACT

The present study narrates the extraction of rutin from Tagetes erecta (Marigold) via maceration followed by ultrasonication. The extracted rutin was further fabricated into nanoparticles by high-pressure homogenization (HPH) and assessed by HPLC, DSC, XRD, TEM, and FTIR spectroscopy. The optimized batch of nanoparticles obtained using 32 central composite design (CCD) which exhibited particle size 209±14 nm, PDI 0.234±0.06, and 92±1.3% entrapment efficiency. The lyophilized rutin nanoparticles were further converted into nano-suspension. Interestingly, the rutin nano-suspension exhibited a similar antitussive effect in vivo as that by standard treatment pentoxyverine and reduced the coughing times within 2 min. Also, the phlegm showed high UV absorbance, implying its better expectorant activity than the standard and control. The rutin nano-suspension was highly stable and shelf life was found to be ∼29.1 months. The present study, for the first time, paves a way for the use of rutin nano-suspension to overcome chest congestion, shortening of breath, and in the management of cough.

2.
Journal of Drug Delivery Science and Technology ; : 103930, 2022.
Article in English | ScienceDirect | ID: covidwho-2095604

ABSTRACT

Organ-on-a-chip is a three-dimensional microfluidic system that simulates the cellular structure and biological milieu of an organ, that seemed to be constructed and studied substantially in the last decade. Microchips can be configured to suit disease states in a variety of organs, including the lung. When contrasted to traditional in vitro models like monolayer cell lineages, lung-on-a-chip models lays out a pragmatic portrayal of disease pathophysiology and pharmaceuticals’ mode of action, and this is especially more prevailing in connection with the COVID-19 pandemic. Animal models have typically been used in pharmaceutical drug screening to assess pharmacological and toxicological reactions to a new entity. These adaptations, on the other hand, do not precisely represent biological reactions in humans. Present and prospective uses of the lung-on-a-chip model in the pulmonary system are highlighted in this overview. In addition, the constraints of existing in vitro systems for respiratory disease simulation and therapeutic discovery would be emphasized. Attributes of lung-on-a-chip transformative features in biomedical applications will be addressed to illustrate the relevance of this lung-on-chip model for medical science.

3.
Sci Total Environ ; 792: 148548, 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1272718

ABSTRACT

The ongoing COVID-19 pandemic made us re-realize the importance of environmental disinfection and sanitation in indoor areas, hospitals, and clinical rooms. UVC irradiation of high energy and short wavelengths, especially in the 200-290-nm range possesses the great potential for germicidal disinfection. These properties of UVC allow to damage or destruct the nucleic acids (DNA/RNA) in diverse microbes (e.g., bacteria, fungi, and viruses). UVC light can hence be used as a promising tool for prevention and control of their infection or transmission. The present review offers insights into the historical perspective, mode of action, and recent advancements in the application of UVC-based antiviral therapy against coronaviruses (including SARS CoV-2). Moreover, the application of UVC lights in the sanitization of healthcare units, public places, medical instruments, respirators, and personal protective equipment (PPE) is also discussed. This article, therefore, is expected to deliver a new path for the developments of UVC-based viricidal approach.


Subject(s)
COVID-19 , Pandemics , Disinfection , Humans , Personal Protective Equipment , SARS-CoV-2 , Ultraviolet Rays
4.
Environ Int ; 146: 106183, 2021 01.
Article in English | MEDLINE | ID: covidwho-892858

ABSTRACT

Airborne pathogens are small microbes that can cause a multitude of diseases (e.g., the common cold, flu, asthma, anthrax, tuberculosis, botulism, and pneumonia). As pathogens are transmitted from infected hosts via a number of routes (e.g., aerosolization, sneezing, and coughing), there is a great demand to accurately monitor their presence and behavior. Despite such need, conventional detection methods (e.g., colony counting, immunoassays, and various molecular techniques) generally suffer from a number of demerits (e.g., complex, time-consuming, and labor-intensive nature). To help overcome such limitations, nanomaterial-based biosensors have evolved as alternative candidates to realize portable, rapid, facile, and direct on-site identification of target microbes. In this review, nano-biosensors developed for the detection of airborne pathogens are listed and discussed in reference to conventional options. The prospects for the development of advanced nano-biosensors with enhanced accuracy and portability are also discussed.


Subject(s)
Biosensing Techniques , Nanostructures , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL